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In the paper by Rumiantsev [1] there is proved a theorem according to which the stabilit
of the steady rotation of a rigid body with a cavity which is filled with two incompressible
homogeneous fluic}ts”requires that the functional
W= —i——% 4 0T+ a5 -+ @381 + 052, 11 =TI+ S pllyd7 4 S pallz dt
1 T2
has an isolated minimum W, for the unperturbed motion.

Here k, is the moment o(} momentum of the whole system relative to the axis of rotation
in the undisturbed motion; S is the moment of inertia of the system relative to the same axis
in the perturbed state; 7;, T, are the volumes occupied by the fluids; py, Py are the corres-
ponding densities of the fluids; Il , II,, [1, are the potentials of the forces which are acting
on the body and the fluids, respectively; ¢ is the area of the interface of the fluids; 0., 0,
are the areas of the wall in contact with the fluids; a, @, a; are the corresponding coeffi-
cients of surface tension. It is assumed that both fluids are in equilibrium relative to the
body for undisturbed motion.

The existence of a weak minimum is a necessary condition for the minimum of the func-
tional. The method of obtaining sufficient conditions for the weak minimum of the function-
al W from a study of its second variation § 2W is set out below.

1.The functional W clearly depends on the shape of the interface of the fluids (o) and
on the coordinates g (j = 1,..., » — 1) which describe the position of the body (except the
cyclic one ¢, ). The first variation of the functional W vanishes [1] for steady motion of the
body which 1s described by Eqs.
g, =0, g¢gp=0t © = const
Let the function [, given on the undisturbed surface {0) determine the deviation of the
interface (g) from the unperturbed surface (6),. Then the second variation §2¥ in the gen-
eral case must consist of three parts: a quadratic functional in /, a quadratic form of the
coordinates g; and a functional linear in g; and in [ i.e. 52W can be put in the form
§W = Pr()) - Pa(l, ¢ )+ U (q.),

Pi(ly=(Li, 1}, P2(l, q)=2(, D), (1. D)= S Dlds
()

Here L1l is a linear operator, @ is a function of the form a;q; + ...+ @p_19n_1» Where g
are certain functions given on the surface (0)y, U (g;) is the quadratic form o?_q « The ex-
plicit form of the operator L and the functions ® and U depend on the external {orce and
and the method of measuring the deviation . One of the possible forms is shown below as
an example. Another form of these expressions may be found in [ 2].

Let the functional P, (or the operator L ) be positive definite. The corresponding condi-
tions will be the first group of conditions for the weak minimum W.

548



The problem of a minimum of a functional 549

One may reach & second set of conditions following the method set out in {3 and 4. The
functional P, + P, has a minimum for fixed g and this minimum [5] is found from the solg-
tion I,{g;) of Eq.

LI+ @ = Co {1)
{{i, ¢4) = 0 because the fluids are incompressible). Also
P+ Py=Py(l—1) + Y2 Pa(hy)
It is clear that
min (Py 4 Pz} = 3y Py (L) = (I, @)

Because Fq. (1) is linear, its solution I; will be a linear function of ¢; and (4, @) will

be a quadratic form of 4;. The second variation can be put in the form

T 1.rr

W = P, (I — &) + V {gj), Vigy = D) +U

The following theorem can now be proved.

Theorem. If P, is a positive definite functional and V (g¢,) is a positive definite quad-
ratic form, then the functional W has a minimum W, for ¢ = 0,1=0.

Proof. The difference between the values of the functional W in the perturbed and the
unperturbed states of the system may be presented in the form

W—Wo=8W+a(ll*+hqg]» JL2=CLY, lql*=g*+ ..+,
where a ~ 0 if (][] 2+[/g]|2) » 0; or this can be written after transformations as

W—Wy=P (Il —1)+V{g+b(ll—Ll2+ql?
where b 0 if (|1 - {,]|2 + llqll!’)» 0
As assumed there exists a number d > { such that

Vigi)>djqlr
We will choose a number & > 0 such that

Th |6 <min (s, Yydy mpm | L%+ [4]® + 1) <e
en
W—Wo>"yfjl — L2+ Ydlg] >0, if [L]*+]q?+0

i.c, ¥ has a minimum W, for¢; = 0, I= 0.

In order to construct the function ¥ it is not necessary to solve Eq. {1). The coefficients
of this quadratic form may be determined by any of the direct methods (e.g. Ritz’s); this re-
quires the minimization of the functional P, + P, for fixed g;.

2. Let us consider the problem of the motion of a rigid body with a fixed point O under
the action of the uniform gravitational force with acceleration g. Let us iniroduce the coor-
dinate axes y,, y,, y3 which are fixed, where y is along the upward vertical. The axes x,
%,, x3 which ‘are ?ixeg in the body are the principal axes of the ellipsoid of inertia at the
point 0. Polar coordinates r, ¢ are also introduced in the plane x, x,.

We assume that the steady motion is a rotation of the body and the fluids in the cavity
with constant angular velocity w about the axis x; which coincides with the axis y,.

For simplification of the calculations we will consider that the cavity is formedsby a sure
face of revolution about the x4 axis. The equation of this surface is z; = v (). The surface
which separates the fluids in the cavity is also a surface of revolution with equation x, =
= f(r). Then the axes x; will be the principal axes of inertia for the whole system in the un-
perturbed motion. The fluid with density p, is below the surface of separation,

Let f be a single-valned function with bounded first and second derivatives. Iz this case
we may take the deviation /{r, 9} as the displacement of the surface of separation along the
axis x4 i.e. if x, = A(r, P) is the equation of the surface of separation in the perturbed state
then [ = A —~ f, Then

280W = P;+ Py + Uz*é—.—(pm SS r2ldQ>2+ SS [pgl2+a(lr2{{}3+__l_?ﬂg_})]dg_
@ @) ‘ r

- ui w2 {f@ar +S§ 20{(g + @) {11008 @ + T25in @) Ir dQ + 112Q (4) -+ 122Q (B)
()]
B 1 1 112
P =p1—pe U}:_—WVW’ u=m(1—+w%—-fn)

Q(A) =@*(C— 4)— Mgzgo,  7,=cos(ys, 2,)
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Here M is the mass; x; , is the coordinate of the centre of gravity; 4, B, C are the prin-
cipal moments of inertia refative to the axes xy, x5, ¥3 of the whole system taken as a sin-
gle body in the undisturbed motion; ({}) is the region bounded by the circle I which is the
projection on the plane x,, x, of the line of intersection of the surface of separation with
the wall of the cavity. Partial derivatives with respect tor, ¢ are subscripted. For an un-
perturbed motion y, = y, = 0.

It is clear that P will be a positive definite functional if

£1 > Py p<o (2)
Eq. (1) will have the form

1 i
Ll o1 — [ (1, 719, 5 o ()] +

ripte?
+—TS§ rildQ = —p (g4 0*f)r (11008 ¢ + 1280 9) + ¢
()
The quantity ¢, and the term containing the integral will vanish at the minimum so these
can be omitted immediately. The boundary condition for the solution of this equation is
L —pl=0lp
Since the operator L is linear the solution for I;, may be split into two parts.
L=y u(r)cose + y,0 (r) sing
For u (r) and v (r) we will have the same equation
Liu = — p(g -+ o) r, cos@ Liu =L {u cosq) (3}
with boundary condition
u, = Wl _p

The quadratic form ¥ now takes the form
R

2 = 1 [Q () - v + 12 1Q(B) v, v (g + @) wrads
0

When the solution of Eq. {3) is substitated into ¥ we get the condition for it being posi-

tive definite,
0¥ (C — A) — Mg 230+ 1pv >0, A>B 0

Conditions (2} and {4) assures a weak minimum for ¥ in this problem,

[In1 the case of no surface tension (@ = 0) this condition corresponds to an analogous case
in [ 3].

The numerical calculation of v in a specific problem may be performed using the Ritz
method and taking the Bessel functions J (A, ) as coordinates. The number A, is the solu-
tion of Eq.

d

Here R is the radius of the circle ['. The Ritz system has then the form

R R
Nepi=c, b=\ Lhanionran o=@ rannoned
i ] 0

and for v we get
N oz Eaici
i

Let the cavity be cylindrical with radius R = 1. The surface of separation is at a finite
distance from the end of the cavity., The parameters p, g, a, a, a4 are such that the sur-
ga}ce of separation for equilibrium of the body is given by the curve in Fig. 5 of the paper

6} for W, = 1.
Calculation of p by the Ritz method gives for the first and second approximations:
v, = — (.236, vy = — 0.245

These values are very close to one another and a rapid convergence is likely. Unfortu-
nately, these values of v are in error although they are sufficiently accurate for practical
applications.

Consider now the case where the value v is found analytically.

In [7] there is shown the form of the surface (o), at equilibrium (@ = 0) with the coef-
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ficient g assumed small, The gurface (0), in this case is a horizontal plane except for a
circular region of width ~ V& near the wall of the cavity where the maximum distance of
(0), from this plane is a value of the order V@, and f,~I.

qﬂxe quantity v can be calculated in this case with the accuracy up to the terms of first
order in ¢ . In a cylindrical cavity, since (I;,®) = v (v,* -+ v;%) the value of  can be con-
sidered as a minimum of the functional

R
wi={[gur + 2 ({0 u2 + 2o (f} w2) + 2rgu | rar
0 P r
We will assume the functions u; and u; , which are minimized, are bounded. Since f, ¥ 0
only in the region of width ~ } o , the functional W, may be replaced by the functional

Wo = S [gu2 + -F;i (ur2 + :_2 u? ) + 2rgu:' rdr

with the accuracy up to the terms of the first order in @. The minimizing function for W,
clearly has the form
I,(kr)

ST @ LRy M =eele

and with first order accuracy
V= — YRS+ aR?/ p
Functionals W, and W, will be identical if the surface (0), is a plane. In the calculation
of the coordinates of the centre of gravity %3,0 the surface o separation may also be consi-
dered plane and the curvature introduces a correction ~ a/?, This indicates that for a small
surface tension the curvatures at the wall may be neglected and they only affect terms of

higher order.
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